Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex.

نویسندگان

  • Huifang Li
  • David A Prince
چکیده

We recorded spontaneous and evoked synaptic currents in pyramidal neurons of layer V in chronically injured, epileptogenic neocortex to assess changes in the efficacy of excitatory and inhibitory neurotransmission that might promote cortical hyperexcitability. Partial sensory-motor neocortical isolations with intact blood supply ("undercuts") were made in 20 rats on postnatal day 21-25 and examined 2-6 wk later in standard brain slice preparations using whole cell patch-clamp techniques. Age-matched, uninjured naive rats (n = 20) were used as controls. Spontaneous and miniature excitatory and inhibitory postsynaptic currents (s- and mEPSCs; s- and mIPSCs) were recorded using patch-clamp techniques. The average frequency of s- and mEPSCs was significantly higher, while that of s- and mIPSCs was significantly lower in neurons of undercuts versus controls. The increased frequency of excitatory events was due to an increase in both s- and mEPSC frequency, suggesting an increased number of excitatory contacts and/or increased release probability at excitatory terminals. No significant difference was observed in 10-90% rise time of these events. The input-output slopes of fast, short-latency, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate (AMPA/KA) receptor-mediated components of evoked EPSCs were steeper in undercuts than in controls. The peak amplitude of the AMPA/KA component of EPSCs evoked by supra-threshold stimuli was significantly greater in the partially isolated neocortex. In contrast, the N-methyl-D-aspartate receptor-mediated component of evoked EPSCs was not significantly different in neurons of injured versus control cortex, suggesting that the increased AMPA/KA component was due to postsynaptic alterations. Results support the conclusion that layer V pyramidal neurons receive increased AMPA/KA receptor-mediated excitatory synaptic drive and decreased GABA(A) receptor-mediated inhibition in this chronically injured, epileptogenic cortex. This shift in the balance of excitatory and inhibitory synaptic activation of layer V pyramidal cells toward excitation might be maladaptive and play a critical role in epileptogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal in a Rat Model of Posttraumatic Epilepsy Presynaptic Inhibitory Terminals Are Functionally

[PDF] [Full Text] [Abstract] , September 20, 2010; . Cereb. Cortex Xiaoming Jin, John R. Huguenard and David A. Prince Epileptogenic Neocortex Reorganization of Inhibitory Synaptic Circuits in Rodent Chronically Injured [PDF] [Full Text] [Abstract] , May , 2011; 21 (5): 1094-1104. Cereb. Cortex Xiaoming Jin, John R. Huguenard and David A. Prince Epileptogenic Neocortex Reorganization of Inh...

متن کامل

Reorganization of inhibitory synaptic circuits in rodent chronically injured epileptogenic neocortex.

Reduced synaptic inhibition is an important factor contributing to posttraumatic epileptogenesis. Axonal sprouting and enhanced excitatory synaptic connectivity onto rodent layer V pyramidal (Pyr) neurons occur in epileptogenic partially isolated (undercut) neocortex. To determine if enhanced excitation also affects inhibitory circuits, we used laser scanning photostimulation of caged glutamate...

متن کامل

Effects of visual deprivation on synaptic plasticity of visual cortex

  TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...

متن کامل

Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats.

Formation of new recurrent excitatory circuits after brain injuries has been hypothesized as a major factor contributing to epileptogenesis. Increases in total axonal length and the density of synaptic boutons are present in layer V pyramidal neurons of chronic partial isolations of rat neocortex, a model of posttraumatic epileptogenesis. To explore the functional consequences of these changes,...

متن کامل

Neuronal Plasticity: Beyond the Critical Period

Neuronal plasticity in the brain is greatly enhanced during critical periods early in life and was long thought to be rather limited thereafter. Studies in primary sensory areas of the neocortex have revealed a substantial degree of plasticity in the mature brain, too. Often, plasticity in the adult neocortex lies dormant but can be reactivated by modifications of sensory input or sensory-motor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2002